Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.more » « less
-
The emergence of plant pathogens is often associated with waves of unique evolutionary and epidemiological events. Xanthomonas hortorum pv. gardneri is one of the major pathogens causing bacterial spot disease of tomatoes. After its first report in the 1950s, there were no formal reports on this pathogen until the 1990s, despite active global research on the pathogens that cause tomato and pepper bacterial spot disease. Given the recently documented global distribution of X. hortorum pv. gardneri, our objective was to examine genomic diversification associated with its emergence. We sequenced the genomes of X. hortorum pv. gardneri strains collected in eight countries to examine global population structure and pathways of emergence using phylodynamic analysis. We found that strains isolated post-1990 group by region of collection and show minimal impact of recombination on genetic variation. A period of rapid geographic expansion in X. hortorum pv. gardneri is associated with acquisition of a large plasmid conferring copper tolerance by horizontal transfer and coincides with the burgeoning hybrid tomato seed industry through the 1980s. The ancestry of X. hortorum pv. gardneri is consistent with introduction to hybrid tomato seed production and dissemination during the rapid increase in trade of hybrid seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Luigi Martelli, Pier (Ed.)Abstract Summary TARDiS is a novel phylogenetic tool for optimal genetic subsampling. It optimizes both genetic diversity and temporal distribution through a genetic algorithm. Availability and implementation TARDiS, along with example datasets and a user manual, is available at https://github.com/smarini/tardis-phylogeneticsmore » « less
-
Background: In the wake of the COVID-19 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real-time. Open-source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real-time remains to be explored. Objective: The objective of this study was to convene experts in public health, infectious diseases, virology, and bioinformatics – many of whom were actively engaged in the COVID-19 response at the time of their participation – to discuss the application of phylodynamic tools to inform pandemic responses. Methods: A series of four virtual focus group discussions were hosted between June 2020 and June 2021, covering the pre- and post-variant and vaccination eras of the COVID-19 crisis. Audio recordings were transcribed verbatim, and an iterative, thematic qualitative framework was used for analysis. Results: Of the 41 individuals invited, 23 total participants (56.1%) agreed to participate. Across the four focus group sessions, 15 (65%) of the participants were female, 17 (74%) were white, and 5 (22%) were black. Participants were described as molecular epidemiologists (ME, n=9), clinician-researchers (n=3), infectious disease experts (ID, n=4), and public health professionals (PH) at the local (n=4), state (n=2), and federal (n=1) levels. Collectively, participants felt that successful uptake of phylodynamic tools relies on the strength of academic-public health partnerships. They called for interoperability standards in sequence data sharing and cited many resource issues that must be addressed, including timeliness and cost, in addition to improving issues related to sampling bias and the translation of phylodynamic findings into public health action. Conclusions: This was the first qualitative study to characterize the perspectives of key experts regarding the utility of phylodynamic tools for the public health response to COVID-19. The focus group participants identified key areas for improvement of existing and future phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology. This information is critical to both policymakers and developers as they consider how to handle existing and emerging SARS-CoV-2 variants during the ongoing crisis.more » « less
-
null (Ed.)Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been growing exponentially, affecting over 4 million people and causing enormous distress to economies and societies worldwide. A plethora of analyses based on viral sequences has already been published both in scientific journals and through non–peer-reviewed channels to investigate the genetic heterogeneity and spatiotemporal dissemination of SARS-CoV-2. However, a systematic investigation of phylogenetic information and sampling bias in the available data is lacking. Although the number of available genome sequences of SARS-CoV-2 is growing daily and the sequences show increasing phylogenetic information, country-specific data still present severe limitations and should be interpreted with caution. Objective The objective of this study was to determine the quality of the currently available SARS-CoV-2 full genome data in terms of sampling bias as well as phylogenetic and temporal signals to inform and guide the scientific community. Methods We used maximum likelihood–based methods to assess the presence of sufficient information for robust phylogenetic and phylogeographic studies in several SARS-CoV-2 sequence alignments assembled from GISAID (Global Initiative on Sharing All Influenza Data) data released between March and April 2020. Results Although the number of high-quality full genomes is growing daily, and sequence data released in April 2020 contain sufficient phylogenetic information to allow reliable inference of phylogenetic relationships, country-specific SARS-CoV-2 data sets still present severe limitations. Conclusions At the present time, studies assessing within-country spread or transmission clusters should be considered preliminary or hypothesis-generating at best. Hence, current reports should be interpreted with caution, and concerted efforts should continue to increase the number and quality of sequences required for robust tracing of the epidemic.more » « less
-
The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae , where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.more » « less
-
Abstract BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals. MethodsBetween October 2020 and July 2021, we sequenced 4439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral RNA burden and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals. ResultsThe majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about 3 months (104 ± 57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, 3 of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad viral RNA copy number values during acute infection (interquartile range, 1.2-8.64 Log copies/mL), on average 38% lower than matched unvaccinated patients (3.29-10.81 Log copies/mL, P < .00001). Nevertheless, 49% to 50% of all breakthroughs, and 56% to 60% of Delta-infected breakthroughs exhibited viral RNA levels above the transmissibility threshold (4 Log copies/mL) irrespective of time after vaccination. ConclusionsDelta infection transmissibility and general viral RNA quantification patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should specifically address whether extra vaccine doses curb breakthrough contribution to epidemic spread.more » « less
An official website of the United States government
